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Point defect modes of acoustic wave in two-dimensional square arrays of square water rods in a mercury
host were studied. The defects are created by three kinds of geometry, namely, square defect, circular defect,
and rectangular defect, respectively. The results show that for both square defect and circular defect, the defect
modes are only related to the defect filling fractionFd, but not with the geometry of defects(square or circular),
as well as the orientations of the square defect. For the rectangular defect, the defect modes could be tuned by
changing the ratio of edge width of the defect, moreover, the double degenerate one will split into two
nondegenerate modes when the ratio of edge widthsLx/Ly.9.0. Meanwhile the corresponding pressure dis-
tributions also will be changed.
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I. INTRODUCTION

In past few years, the phononic crystals, periodic elastic
composite materials, have attracted much attention(Refs.
[1–13]). Such artificial crystals can exhibit phononic band
gaps in which sound and vibration are all forbidden in any
direction. The existence of the acoustic/elastic wave band
gaps is significant for us to better understand the Anderson
localization of sound and vibrations in composite media, as
well as their numerous applications. One particularly inter-
esting aspect of these crystals is the possibility of creating
crystal defects that confine the elastic/acoustic waves in the
localized modes. Because of the locally breaking the period-
icity of the structures, the defect modes can be created within
the acoustic(elastic) wave band gaps, which are strongly
localized around the local defects. So a point defect can act
as a microcavity and a line defect can be used as a wave-
guide. These controllable defect modes have played key
roles in their possible applications(such as acoustical filters
and transducers).

Although there have been many works in searching the
optimal conditions of the appearance of acoustic wave(elas-
tic wave) band gaps(Refs. [1–6]), only a few works have
been devoted to the defects and disorder-induced phenomena
in two-dimensionals2Dd and 3D phononic crystals. Sigalas
[7] had treated the point and linear defect states in 2D
phononic crystals composed of solid cylinders in an air or in
a solid host by means of the plane-wave expansion(PWE)
method. The results show that the defects in those structures
create the localized states inside the band gaps. Kafesakiet
al. [8] and Khelif et al. [9] have studied the linear
waveguides in 2D elastic wave band gap materials consti-

tuted by either the fluid or solid constituents. The calcula-
tions of the band structures and the transmission coefficients
were performed by using the PWE method and the finite
difference time domain(FDTD) method, respectively. They
have studied the guiding of the elastic waves through the
linear defect modes created by a line of defects in as2Dd
elastic wave band gap material, and found that these defects
could act as waveguides in the frequency regime of the gap.
Miyashita et al. [10] also reported the numerical investiga-
tions of transmission and waveguide properties of the 2D
acoustic crystals by FDTD method. The localization phe-
nomena in the linear and point defects were also observed
experimentally[11].

However, all the above works[7–11], only the circular
cross section of the cylinders was considered, and the point
defects are created by changing the radius of a cylinder or
simply removing the whole cylinder. Recently the present
authors have studied the 2D defect problem by using differ-
ent geometry of cross section from the rest cylinders to in-
troduce the point defects. The results show that the defect
states not only depend on the filling fraction of the defect,
and also on its geometry[12]. On the other hand, we had
studied the acoustic band gaps in the 2D liquid phononic
crystals composed of water(mercury) square rods inside
mercury(water) host[13]. It is found that acoustic band gaps
could be tuned effectively by rotating the square rods. The
lowest gap width increases monotonously as the rotation
angle increases for the systems of mercury square rods in a
water host. But for the systems of water square rods in a
mercury host, the opposite result is found, the lowest gap
width will decrease monotonously as the rotation angle in-
creases.
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In the present article, we study the point defects in the 2D
phononic crystals composed of water(with longitudinal ve-
locities c1=1.48 km/s and densityr=1.03103 kg/m3)
square rods with a square array embedded in a mercury(c1
=1.45 km/s,r=13.53103 kg/m3) host, we try to examine if
the rotation effect could be also used to tune the acoustic
defect modes, and how to split the double degenerate modes.
We introduce the point defects by three ways, the first is by
the edge width modification(square defect), i.e., changing
the edge width of the defect square rods and/or rotating them
with the angleu, the second is by replacing one of the square
rods with a circular one(circular defect), the last one is by
replacing one of the rods with a rectangular one(rectangular
defect). The theoretical analyses of the defect modes can be
carried out by the supercell method that has been performed
successfully for the studies of defects in 2D phononic crys-
tals [7,12] and photonic crystals[14,15].

As suggested by several groups[2,3,9,12,13,16–18], to be
practical, some latex material would be used for the inner
layer of the cylinders containing the liquid(air). The mass
density and speed of rubber are comparable to those of water,
so the effect of this thin film can be neglected.

II. RESULTS AND DISCUSSION

Now we consider such a system, in which the supercell
consists of 535 rods. The locations of the square rods of
edge widthL (corresponding the filling fractionF0) are at
fs2mx+1d /2 ,s2my+1d /2g, wheremx,my=0, 1, 2, 3, 4. A de-
fect located at(2.5,2.5) is introduced by changing its edge
width Ld and/or its rotation angleu for the square defect, or
the radiusrd for the circular defect, or the widthLx,Ly along
x,y directions for the rectangular defect, respectively. Figure

FIG. 1. The cross section of XY plane in a 535 supercell. The
square defect locates at(2.5,2.5). The two constituents are denoted
by the black and white sectors, respectively. The mesh stands for
defect.

FIG. 2. Acoustic band structure with a square defect. The defect
filling fraction. Fd=0.03. Its rotation angleu=0°. The filling frac-
tion F=0.30. Symbol lines represent two defect bands.C is the
sound velocity in mercury.

FIG. 3. The pressure distributions of the two defect modes at
point G Fig. 2. (a) and (b) correspond to the double degenerate
modes, dipoles.(c) the nondegenerate mode, monopole.
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1 shows the cross section of XY plane of the supercell with
a square defect. In the present paper, we use 729 reciprocal
vectors per supercell to perform the numerical calculations.
The results show a good convergence.

First, we study the defect modes of the systems consisting
of square water rods inside mercury host. The point defect is
introduced by changing the edge width of one square water
rod located in the center of the supercell. Figure 2 shows the
band structure when there exist a defect water rod, which has
different filling fractionFd from the restsF0. Two flat defect
bands can be found within the frequency range of the band
gap of the perfect array. The upper one is a double degener-
ate one; the lower one is a nondegenerate. Figure 3 shows
the pressure distributions of the defect modes at pointG in
Fig. 2. The results show their peculiar symmetry, for the
double degenerate mode, there are two distributions shown
in Figs. 3(a) and 3(b), which are labeled dipoles since they
have two nodes in the plane, and moreover, one is an almost
replica of the other given by a 90° rotation. For the lower
one, only one peak appears in the center of the defect, and
the pressure decays rapidly away from the defect. Since there
is not a node in the supercell[see Fig. 3(c)], it is labeled a
monopole.

Next we study the effect of the orientation of the square
defect on the defect modes. Five sets of date corresponding
to five rotation anglesu=9°,18°, 27°, 36°, 45° are given in
Table I for a fixed defect filling fractionFd=0.03. One could
immediately find that there are almost the same results for
the five cases. More detailed numerical calculations also
show that the defect modes are independent of the orienta-
tion of the defect rod. In Table I we also present the results
for the circular defect, which have the same defect filling
fraction as the above square defect. The same results as the
square defect case can be found. Although the symmetry of
the system is reduced by rotating the square defect, this
mechanism is not sufficient to tune the modes as well as split
the double defect modes.

In order to split the double mode, we should break further
the symmetry of the system. Now we examine the effect of

the rectangular defect on the defect states. Figure 4 shows
the band structure when the ratio between the edge widthLx
and Ly along x,y directions isLx/Ly=25. It can be clearly
seen that the upper double degenerate defect band in the case
of the square defect is split into two no degenerate ones.
Moreover, both split defect modes have different pressure

FIG. 5. The pressure distributions of the two split defect modes
at pointG in Fig. 4. (a) The higher split mode, quadrupole.(b) The
lower split defect mode, dipole.

TABLE I. The frequency of the edge of the band gap and the
defect midbands in the 2D phononic crystal with a square defect or
a circular defect.sF=0.30,Fd=0.03d.

Defect of shape u v1sc/ada v2sc/adb v3sc/adc v4sc/add

Square

0° 1.825 2.416 4.736 4.901

9° 1.825 2.416 4.736 4.901

18° 1.825 2.415 4.736 4.901

27° 1.825 2.414 4.736 4.901

36° 1.825 2.414 4.736 4.901

45° 1.825 2.413 4.736 4.901

Circular 1.825 2.412 4.734 4.897

av1—the frequency of the lower edge of the band gap.
bv2—the midband frequency of the lower defect band(no degener-
ate).
cv3—the midband frequency of the upper defect band(double de-
generate).
dv4—the frequency of the upper edge of the band gap.

FIG. 4. Acoustic band structure with a rectangular defect. The
defect filling fractionFd=0.03. The filling fractionF=0.30. The
ratio between edge widthsLx/Ly=25. Three defect bands appear
and are represented by symbol lines.
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patterns shown in Fig. 5 from the case of the square defects.
The high one is a quadrupole and the lower is also a dipole
[see Figs. 5(a) and 5(b)]. But the distribution of the lowest
one remains a monopole.

Figure 6 shows the frequencies of the defect midbands as
a function of the ratio of the edge widths in the case of
rectangular defect for a given defect filling fractionFd
=0.03. We can find that the midband frequency of the lower
defect band increases slowly as the ratioLx/Ly increases, at

the same time the upper defect band also slowly increases
following the increase of the ratio,Lx/Ly, but when,
Lx/Ly.9.0, the double degenerate one splits to two defect
bands.

III. CONCLUSION

In a conclusion, using the PWE method and the supercell
calculations, we have studied the point defect modes of the
2D square arrays of the square water rods in a mercury host.
The defects are created by three kinds of geometry, i.e.,
square defect, circular defect, and rectangular defect, respec-
tively. The numerical results show that for both the square
defect and the circular defect, the defect modes are uniquely
related to the defect filling fractionFd, but not with the ge-
ometry of the defects(square or circular) as well as the ori-
entations of the square defect. But for the rectangular defect,
the defect modes could be tuned by changing the ratio of the
edge width. Moreover, in this case the double degenerate
band will split into two defect bands when the ratio
Lx/Ly.9.0.
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FIG. 6. The frequencies of the defect midband as a function of
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